
CS 111
2D arrays

Model declaration for array

BASE_TYPE ARRAY_NAME [ROW_CAPACITY] [COL_CAPACITY]

• This creates a table with ROW_CAPACITY rows and COL_CAPACITY
columns, containing variables with BASE_TYPE

Model declaration for array

BASE_TYPE ARRAY_NAME [ROW_CAPACITY] [COL_CAPACITY]

• To process all elements in the 2D array we follow a nested loop

• Sometimes this should go row by row and sometimes column by
column

• Before coding we should always decide which is more convenient

Model for row by row processing

for (int r = 0; r < ROW_CAPACITY; r++) {

for (int c = 0; c < COL_CAPACITY; c++) {

PROCESS ARRAY_NAME [r] [c];

}

}

Model for column by column processing

for (int c = 0; c < COL_CAPACITY; c++) {

for (int r = 0; r < ROW_CAPACITY; r++) {

PROCESS ARRAY_NAME [r] [c];

}

}

Sample questions

1. The array seatingChart has 5 rows, each of which has 10 columns. Each
entry is a string. How do we declare it?

2. The array digits has 2 rows, each containing 5 columns of numbers. The
first row is 0, 1, 2, 3, 4 and the second is 5, 6, 7, 8, 9. How do we declare
and initialize it?

3. What’s the output of the following code snippet?

int data[2][4] = { {3, 1,4, 1}, {2, 7, 1, 8} };
cout << data[1][1];

Sample exercises

• 2D array int data[2][4] = { {3, 1,4, 1}, {2, 7, 1, 8} };

• What is the for loop control to move through its elements to print it
column by column?

• If we our goal is to print the sums of the rows of the array, do we still
need a nested loop?

• If so, should it be row by row or column by column?

Print the sums of each row

int data[2][4] = { {3, 1, 4, 1}, {2, 7, 1, 8} };

int sum = 0;
for(int r = 0; r < 2; r++){

sum = 0;

for(int c = 0; c < 4; c++){
sum += data[r][c];

cout << data[r][c] << " ";

}

cout << "sum of row " << r << " is " << sum << endl;
}

